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Escape time in anomalous diffusive media
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We investigate the escape behavior of systems governed by the one-dimensional nonlinear diffusion equa-
tion ] tr5]x@]xUr#1D]x

2rn, where the potential of the drift,U(x), presents a double well andD,n are real
parameters. For systems close to the steady state, we obtain an analytical expression of the mean first-passage
time, yielding a generalization of Arrhenius law. Analytical predictions are in very good agreement with
numerical experiments performed through integration of the associated Ito-Langevin equation. FornÞ1,
important anomalies are detected in comparison to the standard Brownian case. These results are compared to
those obtained numerically for initial conditions far from the steady state.
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I. INTRODUCTION

The old problem of surmounting a potential barrie
known as Kramers’ problem, is doubtlessly relevant in co
nection with many topics, in fields ranging from physics
finance. It is a key ingredient to understanding phase tra
tions in complex systems, both in and far from thermal eq
librium. In particular, the quantity known as the escape ti
~or mean first-passage time! from one stable state to anoth
has found numerous applications in a variety of interest
and novel problems. For example, it plays a key role in s
chastic resonance@1# and in describing fluctuation-induce
transport such as occurs in kink motion@2# and ratchets@3#.
Even the extent of chaos in Hamiltonian systems has b
shown to have connections with this quantity@4#. A nice
collection of these and other stochastically driven proces
can be found in Ref.@5#.

However, all of the above examples have been formula
within a standard Brownian framework, for which diffusio
properties are normal. In this paper, we look at the prob
of calculating the escape time for systems exhibiting ano
lous diffusion of the correlated type~in contrast to Levy-type
diffusion, which we do not discuss here!. An understanding
of escape time properties in such systems could open
door for understanding new stochastically driven pheno
ena. To our knowledge, there has yet been little work d
along these lines, although we are aware of some stu
relating the anomalous transport properties on a rand
comb to the distribution of mean first-passage times@6#.

The systems we are interested in are such that the d
sion is dependent on the density of particlesr, resulting in a
diffusion coefficient that is proportional to a power (n21)
of r. Many physical systems are well-described by this cl
of processes. Let us mention, among other examples, pe
lation of gases through porous media (n>2) @7#, thin satu-
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rated regions in porous media (n52) @8#, gravitational
spreading of thin liquid films (n54) @9#, heat transfer by
Marshak waves (n57) @10#, surface growth (n53) @11#,
spatial diffusion of biological populations (n>2) @12#,
plasma flows (n,1) @13#, etc. Explicitly, these processes a
ruled by an equation of the type known in the literature
the porous media equation@14#,

] tr~x,t !5D]x
2@r~x,t !#n, ~1!

wherex is a dimensionless coordinate representing a b
length, angle, or any other chemical or physical state v
able, t is the dimensionless time, andnD.0. Rewriting the
nonlinear term as]x(Dnrn21]xr), it becomes evident tha
the restrictionDn.0 guarantees that the flux will be from
more dense to less dense regions.

Since the nonlinearity inr is known to lead to anomalou
diffusion if nÞ1 @namely superdiffusion forn,1 and sub-
diffusion for n.1 @15,16#, as ^x2(t)&}t2/(n11)#, important
anomalies are also expected when crossing over a barri
involved. Precisely, we want to unveil here how escape pr
erties are altered whennÞ1.

The paper is organized as follows. In Sec. II, we pres
the systems of interest and discuss some of their gen
features. Because fluctuations are determined byr(x,t) for
nÞ1, the escape behavior will depend on the initial con
tion r(x,0). Therefore, we first consider systems in the
cinity of the steady state, a condition that allows analyti
treatment. Numerical and analytical results for this case
presented in Secs. III and IV, respectively. In Sec. V,
study numerically the escape behavior of systems far fr
the steady state, comparing the results with the previ
ones. Finally, Sec. VI contains concluding remarks.

II. THE SYSTEM

Let us consider a set of identical particles immersed i
thermal environment such as that described by the por
media equation~1!. Under the influence of an externa
bistable potentialU(x), introduced in order to probe the es
cape behavior, the density of particles evolves following

d-
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nonlinear Fokker-Planck~FP! equation:

] tr~x,t !5]x@]xU~x!r~x,t !#1D]x
2@r~x,t !#n. ~2!

This class of equations has been the object of diverse pr
ous studies@15–17#.

The stationary solution of Eq.~2! is

rs~x!5@12~n21!bV~x!#1
1/(n21)/Z, ~3!

where@ f #15max$f,0%, Z is a ~positive! normalization con-
stant,b5Zn21/(nD), and V(x)5U(x)2Uo , with Uo the
absolute minimum of the potential. In the limitn→1, the
standard linear Fokker-Planck equation is obtained. In su
case, the steady state characterized by the Boltzmann-G
distribution rs(x);exp„2U(x)/D… is recovered. However
for nÞ1, the stationary solutions of Eq.~2! have the form of
the maximum Tsallis entropy probability distributions~with
Tallis parameterq522n), as already discussed previous
@15–17#, even in the absence of external drift@14,18#. It is
worth recalling that phemonena such as fully developed
bulence@19#, the hadronic transverse moment distribution
high-energy scattering processe1e2→hadrons@20#, among
others, have been satisfactorily described in terms of dis
butions similar to Eq.~3! instead of the canonical stationa
one.

Steady-state solutions are illustrated in Fig. 1 for a qua
potential. Note that a cutoff condition~Tsallis cutoff!, yield-
ing regions with null probability, arises in then.1 case@see
Fig. 1~b!#. For a quartic potential, the conditionn.23 must
hold so that the solutions can be normalized. However,
free-particle case requiresn.21, so we restrict our discus
sion to this regime.

The nonlinearity in the diffusion term of Eq.~2! accounts
for the fact that the environment presents some kind of
order or long-range correlations in space-time leading to
fusion anomalies. The expressionb5Zn21/(nD) can be in-
terpreted as a generalized Einstein relation for this scena
Note that in disordered or correlated systems such as t
discussed here, the standard Einstein relation is expecte
be recoveredin the absence of disorder@21#. This corre-
sponds to the case ofn51 yielding the well-known result
D51/b. Also, as was shown in@16#, the time-dependen
form of these Einstein relations can be used to demons
the anomalous scaling properties of these nonlinear diffus
systems. For the free particle one obtains^x2(t)&}1/b(t)
}Z2(t)}t2/(n11).

The Ito-Langevin~IL ! counterpart of Eq.~2! reads@15#

ẋ52]xU~x!1AuDu @r~x,t !# (n21)/2h~ t !, ~4!

whereh(t) is a d-correlated Gaussian noise with zero me
and variance 2. In the particular casen51, the standard
Langevin equation for constant noise is recovered. It is no
worthy that this is a phenomenological description, in wh
the microscopic trajectories are determined by the ma
scopic quantityr when nÞ1. Physically, this represents
kind of statistical feedback. As with state-dependent nois
is to be seen as the influence of the environment, whic
otherwise not explicitly taken into account by the equatio
of motion. As a particle evolves, it interacts with the en
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ronment such that it reacts to the collective density of sta
around it. We can think of the subdiffusive case as a kind
‘‘attraction’’ to the other particles: Particles tend to sta
close to the other particles, fluctuating not far from the
Conversely, we can think of superdiffusive cases as a kin
reaction to the sparseness: If the particle is in a highly po
lated region, then it is in a sense confined by the other p
ticles, and fluctuations are not so large, but as soon as it
into less dense regions it does not experience this confi
ment and fluctuations can get very large.

III. NUMERICAL RESULTS IN THE VICINITY
OF THE STEADY STATE

For numerical experiments we chose as a prototype of
double-well potential the quartic polynomialV(x)5ax4

1bx31cx21d. The coefficients were chosen as in Fig.
for which (xL ,xO ,xR)5(0,1,3), withxL , xO , andxR corre-
sponding to the bottom of the left-hand well, the top of t
barrier, and the bottom of the right-hand well, respective
We studied the escape behavior close to the steady s
That is, once a population of a large number of particles
already attained the steady state described by Eq.~3!, a probe
was injected atxL . Then its trajectory was obtained by solv

FIG. 1. The cutoff condition.~a! Dimensionless double-well po
tentialV(x)5ax41bx31cx21d, with a5

1
48,b52

1
9 ,c5

1
8 ,d5

3
16.

The stationary distributionrs(x) is shown forn52 ~b! and 0.5~c!,
for different values ofD as indicated in the figure. Forn<1, the
full state space is covered with power-law tails. Forn.1, a cutoff
restricts the attainable space. Observe in~b! that asD decreases,
particles become more confined until only the neighborhood of
deepest valley is allowed. The horizontal lines in~a! represent the
cutoff conditionV(x)51/b, which defines the allowed regions fo
n52 and the same values ofD as in~b!. All quantities are dimen-
sionless.
9-2
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ESCAPE TIME IN ANOMALOUS DIFFUSIVE MEDIA PHYSICAL REVIEW E63 051109
ing, following the numerical scheme in Ref.@22#, the IL ~4!
for r(x,t)5rs(x), starting fromx(t50)5xL . Typical tra-
jectories are displayed in Fig. 2. Forn.1, fluctuations are
reduced and trajectories result confined to the region wi
the cutoff boundaries@see also Fig. 1~b!#; moreover, when
the diffusion constantD is smaller than a critical valueDc
~hereDc.0.17 for n52), the state space becomes disco
nected and crossings become forbidden. Forn,1, the am-
plitude of noise is enhanced in the regions of low density a
the entire space tends to be populated.

We measured the mean first-passage time, i.e., the a
age time intervalT(xL→x) that a particle atxL takes to
reach for the first time a given statex.xL . In Fig. 3, we
present plots ofT(x)[T(xL→x) vs x. For n>1 @Fig. 3~a!#,
plateaus become evident asD approachesDc , indicating that
most of the time is spent overcoming the barrier aroundxO .
On the other hand, forn,1 @Fig. 3~b!#, the passage time i
sensitive to the exact final state and there is not a w
defined plateau, even in the small-D regime. Moreover, asD
decreases, the curves collapse to a limiting one for st
below xR , but grow faster abovexR , diverging in the limit
D→0. The escape behavior seems to be discontinuou

FIG. 2. Typical trajectoriesx vs t for (n,D)5(0.5,0.5) ~dark
gray!, (2,0.5) ~black!, and~2,0.15! ~light gray!.

FIG. 3. T(x)[T(xL→x) vs x for different values ofD indicated
in the figure andn52 ~a! and 0.5~b!. Circles correspond to nu
merical experiments~mean value over 1000 realizations! and full
lines to theoretical prediction given by Eq.~6!.
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D50. In fact, for D50 there is no diffusion, however fo
finite D the particle is attracted towards the deepest valle
xR and becomes trapped within a typical time interval tha
bounded from above. This effect can be understood keep
in mind that fluctuations depend onD not only through the
factorAuDu but also by means of the density through a fac
that, forn,1, becomes very large outside the neighborho
of the absolute minimum where particles tend to concent
asD→0. In other words, the deterministic case is not reco
ered whenD→0 since the effective diffusion coefficien
Drn21 does not vanish in that limit due to the singularity
r50.

IV. ANALYTICAL CONSIDERATIONS

Let us show that these results can be understood ana
cally. For a system in the vicinity of the steady state, we c
consider the following approximation for Eq.~2!:

] tr~x,t !.]x@]xU~x!r~x,t !#1D]x
2@$rs~x!%n21r~x,t !#.

~5!

Once the FP equation is linear, the problem of escape fro
well can be treated directly, following the same lines as
homogeneous processes characterized by time-indepen
drift and diffusion coefficients@23#. Basically, an equation
for the probability that the particle is still within a give
interval of state space at timet is found using the corre-
sponding backward Fokker-Planck equation and solved
der appropriate boundary conditions. In this way, one fin
that the mean first-passage timeT(x1→x2), for x1,x2, is
given by

T~x1→x2!5unubE
x1

x2
@12~n21!bV~y!#1

unu/(12n)dy

3E
2`

y

@12~n21!bV~z!#1
m/(n21)dz, ~6!

wherem51 if n.0 andm5122n if n,0. Expression~6!
reproduces numerical experiments with excellent agreem
as illustrated in Fig. 3.

In Fig. 4, we showT[T(xR)[T(xL→xR) as a function
of 1/D ~full lines!, for different values ofn.0, as calculated
from Eq.~6!. T represents a measure of the escape time fr
the left- to the right-hand well, even in then,1 cases where
plateaus are not well defined. In the rangen.1, T diverges
at a valueDc , defined by the cutoff prescription, below
which the right-hand well becomes inaccessible. In the
,n,1 case,T saturates as 1/D increases. The hyperdiffu
sive regimen,0 ~henceD,0), where spreading is faste
than ballistic, demonstrates the same general features
cussed for the region 0,n,1, but uDu must be considered
instead ofD. For anyn and small 1/uDu, the escape time
follows the power lawT;b3/4;1/uDu3/(n13).

If x1.xL and x2.xR , then it is possible to find an ap
proximate expression for the escape timeT whenuDu ~hence
1/b) is sufficiently small, noting that the integrands in E
~6! present sharp peaks atxO and xL , respectively. In that
9-3
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case, the integrals can be evaluated by a saddle-point
proximation extending the integration limits to the who
space. Following this procedure, we arrive at

T.
2p

AvLvO

2unu
unu1m S 12~n21!bV~xO!

12~n21!bV~xL! D
(unu1m)/[2(12n)]

,

~7!

wherevL andvO are the frequencies at the bottom of the l
well and at the top of the barrier, respectively. Expression~7!
is a generalization of the Arrhenius law, which, as expect
is recovered in the limitn→1. In fact, in that limit, T
.(2p/AvLvO)exp(DV/D), where DV[V(xO)2V(xL) is
the barrier height.

For comparison, the approximation given by Eq.~7! is
also exhibited in Fig. 4~dashed lines!. The approximation is
good for large 1/uDu, as expected. It works better forn.1.
Let us comment on the main features revealed by this
pression. Whenn.1, it foresees the divergence ofT at finite
D. In fact, Dc is obtained from 1/bc.(n21)V(xO). When
n,1, saturation ofT for large 1/uDu is also predicted@unless
V(xL)50# sinceb is an unbounded increasing function
1/uDu. If V(xL)50, then Eq.~7! indicates thatT diverges for
vanishinguDu. In particular, if 0,n,1, T;b (n11)/[2(12n)]

;1/D1/(12n) and the deterministic limit is achieved. In th
limit n→1, the exponential growth ofT with 1/D is always
recovered.

V. NUMERICAL RESULTS FAR FROM
THE STEADY STATE

The problem in the vicinity of the steady state actua
corresponds to a linear one with a state-dependent diffu
coefficient. However, it allows an analytical treatment th
can be kept in mind as a reference when studying more g
eral cases. In order to test how the previous results com
to those of a more general situation, we also performed
merical studies of the escape properties far from the ste
state. Particularly, we studied the case in which particles

FIG. 4. Escape timeT[T(xR) as a function of 1/D, for different
values ofn.0 indicated in the figure. Full lines are generated fro
Eq. ~6!. Dashed lines correspond to the low-D approximation given
by Eq.~7!. Symbols correspond to the initial condition where all t
particles~at least 1000! are injected at the same time atxL . Dotted
lines are guides for symbols. Inset: Detail~semilog! of the low-D
region forn<1.
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injected all at the same time atxL . This instance requires
simultaneous integration of the FP equation, in order to f
low the evolution of r(x,t) starting from r(x,0)5d(x
2xL), together with integration of the IL equation~4!, start-
ing from x(t50)5xL50. Now, the parametern must lie in
the regionn.0 due to the divergence in Eq.~2!. An implicit
finite-difference scheme with centered space differences
employed for numerical integration of the nonlinear F
equation@24#. The time evolution of the density is illustrate
in Fig. 5.

The escape timeT as a function of 1/D ~symbols! ob-
tained for different values ofn was included in Fig. 4. Let us
compare this case to the precedent steady one. For s
ciently largeD, T is not sensitively dependent on the initi
distribution and Eq.~6! fits well to the numerical results fo
any n.0, following the power lawT;1/D3/(n13) derived
above. On the other hand, for smallD, crossing times be-
come closer to those of the standard casen51 for any n.
This can be understood as follows. Forn.1, passage times
are smaller than those given by Eq.~6! since, as the distri-
bution evolves, there is an initial passage even between
gions disconnected at the steady state@see Fig. 5~a!#. How-
ever, our results suggest that the divergence ofT for a finite
critical D, close toDc , still occurs. On the other hand, in th
rangen,1, crossing times are larger than those given by
~6! since now the density of particles is initially unfavorab
for surmounting the barrier@see Fig. 5~b!#. Saturation is not
observed and the escape time increases with 1/D apparently
following a power law. It is worth noting that, as derive
above, a power law with exponent 1/(12n) is the one ex-
pected if the average effective potential felt by crossing p
ticles has the absolute minimum atxL , which is consistent
with the observed density evolution@see Fig. 5~b!#.

VI. FINAL REMARKS

Summarizing, we have obtained the escape time for s
tems exhibiting anomalous diffusion due to a stochastic n

FIG. 5. Time evolution of the density of particles obtained
numerical integration of Eq.~2! with r(x,0)5d(x) for (n,D)
5(4.0,2.5)~a! and~0.5,0.1! ~b!. The profiles correspond to timest
indicated in the figure.
9-4



n
rs

e

ite

e

in
te,

s-
nd

ESCAPE TIME IN ANOMALOUS DIFFUSIVE MEDIA PHYSICAL REVIEW E63 051109
linear dependency on the density. For steady-state co
tions, we obtain an analytical expression for the mean fi
passage time whose predictions are in excellent agreem
with numerical results~Fig. 3!. This analytical expression
yields a generalization of Arrhenius law. A behavior qu
different from that of the standard Brownian casen51 is
depicted. Under close to stationary conditions, two regim
are detected: In the regionn,1 ~superdiffusion!, the escape
time T saturates for vanishingD, if V(xL)Þ0, and grows
with 1/D following a power law otherwise. In the regionn
.1 ~subdiffusion!, T diverges atDc ~Fig. 4!.
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These results give hints of what should be expected
more general cases. For systems far from the steady staT
grows with 1/D apparently following a power law in the
superdiffusive cases whileT diverges at finiteD in the sub-
diffusive ones.
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